

A Low-carbon roadmap for Belgium

Study realised for the FPS Health, Food Chain Safety and Environment

Buildings sector – October 2012

This document is based on content development by the consultant team as well as an expert workshop that was held on the 15-06-2012

Content – Buildings sector

Summary and references	p. 2
Context and historical trends	p. 6
 Methodology 	p. 18
Details of the ambition levels and costs per lever	p. 30
Barriers to reduce emissions	p. 76

2

Key messages in the Building Sector

- Energy consumption in buildings relates to fundamental needs of the population (heating, cooking, hygiene). As a consequence, smart energy demand mitigation should occur while guaranteeing those fundamental needs. Demography is clearly one of the main parameters for the energy demand of the residential sector, while the evolution of added value is an important driver for the tertiary buildings.
- The building sector is one of the few sectors presenting an increase in emissions between 1990 and 2010.
- The evaluation of energy consumptions and emission levels of the building park over time is not as straightforward as it
 might be in other sectors : the energy consumption and emissions of the sector are strongly correlated to seasonal
 fluctuations (summer vs. winter) and annual variations (warm years vs. cold years) of the weather conditions.
- Increasing the performance of the building envelopes is crucial if wanting to reduce the overall energy consumption of the sector. One of the essential measures to reach a more energy efficient building park is through ambitious standards for new buildings.
- Considering the long lifetime of buildings, relying on the high energy performance of new-builts only will not be sufficient to reach emission reductions of the order of 80-95%. Therefore, attention should be paid to the improvement of the current building park as well. Renovation speed and/or post-renovation performance of the buildings should be amplified.
- Improving the performance of the building park might induce additional emissions in other sectors (industry, transport,...) due to increased activity in the short term. But these should be largely compensated over time. Inversely, intelligent urban planning (densification) can potentially reduce emissions in other sectors as well.
- Several technologies are at hand to provide the energy inside homes and tertiary buildings. These technologies present different energy-efficiencies, carbon-intensities and decarbonisation potentials. Depending on the geographical availability and the maturity of the technologies, the **optimal technologies will have to be selected** to progress towards a low-emission building park.

List of references

- DECC, 2050 Pathways Analysis, <u>http://www.decc.gov.uk/assets/decc/What%20we%20do/A%20low%20carbon%20UK/2050/216-2050-pathways-analysis-report.pdf</u>, July 2010
- DECC, The potential and costs of district heating networks, April 2009
- Nationaal Instituut Statistiek, National Buildings Register, consulted in 2012
- Household Budget Survey 1999-2010, consumption of durable goods, available online on: http://statbel.fgov.be/nl/modules/publications/statistiques/arbeidsmarkt_levensomstandigheden/huishoudbu dget_1999-2010.jsp
- Federal Plan Bureau, *Demographic Projections 2010-2060*, December 2011, available online on: http://statbel.fgov.be/nl/modules/publications/statistiques/bevolking/brochure_perspectives_de_population_ 2010-2060.jsp
- Federal Plan Bureau, Belgian Energy Projections 2010-2030, November 2011, available online on: http://www.plan.be/publications/publication_det.php?lang=nl&TM=30&IS=63&KeyPub=1083http://statbel.fgo v.be/nl/modules/publications/statistiques/bevolking/brochure_perspectives_de_population_2010-2060.jsp
- Studiecommissie voor vergrijzing, Annual report, June 2011
- Federal Planbureau, Economic projections, 2010
- Buildings Performance Institute Europe (BPIE), Europe's buildings under the microscope A country-by-country review of the energy performance of buildings, October 2011VITO, Prognose warmte- en koudevraag gebouwen, 2011
- Bertoldi P. & Atanasiu B., JRC, Electricity Consumption and Efficiency; Trends in European Union, 2009

List of references

- VITO, Times Belgium, 2012
- VITO & ECONOTEC, Potentiële emissiereducties van de verwarmingssector tegen 2030, januari 2011
- VITO, Milieukostenmodel huishoudens, 2012
- VITO & ICEDD, Energy Balances of three Regions (Flanders, Wallonia and Brussels), 2012
- VITO, Energie- en broeikasgasscenario's voor het Vlaamse Gewest, referentiescenario tot en met 2012, 2006 Belgium's greenhouse gas inventory (1990-2010) - National Inventory Report submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol, April 2012.
- Centre d'Etude, de Recherche et d'Action en Architecture, L'application de principes de la maison passive en région de Bruxelles-capitale, 2008
- ECN & KEMA, Inventarisatie van de kosten van geothermische energie bij opname in de SDE, februari 2011
- VEA (Flemish Energy Agency), Analysis of Flemish EPR 2006-2010, April 2012
- Ecofys & E3M-lab, Sectoral Emission Reduction Potentials and Economic Costs for Climate Change (SERPEC-CC), 2009
- Consulted websites:
 - http://www.vibe.be/downloads/10.Studiedagen_vormingen_AV_ea/10-11-12_Nieuwe_ontwikkelingen_ruimteverwarming/handouts_PHP_pdf.pdf
 - http://www2.vlaanderen.be/economie/energiesparen/epb/doc/evaluatienota2010.pdf
 - http://www.carbontrust.com/media/77260/ctc788_micro-chp_accelerator.pdf

Final energy consumption is split between the industry (42%), Buildings (34%) and transport (24%)

Final energy consumption in Belgium, 2010

While overall emissions decreased, buildings emissions significantly increased since 1990

GHG emissions in Belgium, MtCO₂e

 Belgian GHG emissions went down by ~8%, mainly as a consequence of reductions in the industry (combustion and process emissions) and in the power sector

ederal public servic

 Emissions in both transport and buildings have grown significantly by 18% since 1990 Belgium needs to drastically increase its yearly GHG reduction pace in order to be in line with 2050 European objectives

Belgian GHG emissions, MtCO₂e per year

Source: Belgium GHG emissions inventory, Climact

federal public service

HEALTH, FOOD CHAIN SAFETY AND ENVIRONMEN

Emissions in 2010 are relatively equally distributed between power, industry, buildings and transport

GHG emissions in Belgium, 2010, %

- 4 main sectors emit ~90% of emissions in relatively equal shares
 - Power generation
 - Industry with combustion and processes
 - Buildings
 - Transport
- Agriculture and waste make up the remaining 8%

Natural gas and fuel oil are the most important fuels in residential energy balance

Total fuel consumption of residential sector in Belgium, 1990 – 2010, [PJ]

ederal public servic

- The share of natural gas increased from 35% in 1990 to 46% in 2010. At the same time, the share of liquid fuels decreased from 57% to 49%.
- The annual fluctuations are strongly correlated to variation in the heating degree days.

Residential

The share of natural gas is lower for CO₂ emissions than for energy consumption

Total CO_2 emissions of residential sector in Belgium, 1990 – 2010, [kton CO_2]

 In line with their energy shares, most of the CO₂ emissions originate from natural gas and liquid fuels (fuel oil).

ideral rightle servic

- The higher emission factor of fuel oil leads to a higher share of fuel oil in emissions compared to its share in energy consumption. (57% of emissions vs. 49% of energy consumption in 2010)
- The share of natural gas increased from 29% in 1990 to 40% in 2010. At the same time, the share of liquid fuels decreased from 62% to 57%.

Residentia

Natural gas is the most important fuel in the services sector

Services

Total fuel consumption of services sector in Belgium, 1990 – 2010, [PJ]

Liquid fuels come second in importance, but have been losing share continuously (48% in 1990 vs 27% in 2010)

ederal public service RAITH EDOD CHAIN SAFETY AND

- That share has been taken mainly by natural gas (from 51% in 1990 to 71% in 2010)
- Large fluctuations strongly correlated to variations of heating degree days.

Source: Belgium, NIR April 2012

The total energy used in the residential sector is much higher than in the services sector

Total fuel consumption of buildings sector in Belgium corrected for HDD, 1990 – 2010, [PJ]

Residential sector has much higher total fuel consumption compared to services sector: average share of 78% between 1990-2010.

deral public servic

- Residential fuel consumption has been more or less stable, even with demographic growth (+13% from 1995 to 2010).
- Services fuel consumption saw a growth of ~28% between averages of [1990-1995] & [2005-2010]. Added value increased with ~35% from 1995 to 2010.

HDD = Heating Degree Days - Energy consumption expressed in 1799 HDD (15/15) = average HDD between 2000-2009

Source: Belgium, NIR April 2012 – NIS - Federal Plan Bureau

Electricity consumption in the services sector accounts for about 40% of its total energy consumption

ederal public servic

Evolution of electricity consumption is strongly correlated to evolution of households and added value

Total, final electricity consumption of building sector in Belgium, 1990 – 2010, [PJ]

- Strong correlation with evolution of added value (services sector) and number of households.
- Strong increase of electricity consumption in services sector: from 88 PJ in 1990 to 150 PJ in 2010 (+ 169%).
- <u>Remark</u>: Emissions of electricity consumption is modelled in energy sector.

OPE²RA balances demand and supply based on fixed input parameters as well as modifiable levers

21

4 ambition levels are defined for activity levels and emission intensity

Level 1	Level 2	Level 3	Level 4
 Minimum effort (following current regulation) No additional efforts/policies What will become a « Reference scenario » 	 Moderate effort easily reached according to most experts Equivalent to the development of recent programmes for some sectors 	 Significant effort requiring cultural change and/or important financial investments Significant technology progress 	 Maximum effort to reach results close to technical and physical constraints Close to what's considered reachable by the most optimistic observer
•		-	•

Key topics are covered to support the development of low-carbon scenarios

federal public service HEALTH, FOOD CHAIN SAFETY AND ENVIRON

End-uses of		Activity levels	Efficiency	Technology and energy vector
Residential & Services sector	Current data	 What is the evolution assumed for population 	 What's the physical limit or maximal efficiency 	 What can be the maximum and minimum
Heating	 Energy consumption for 	and number of dwellings?Which potential evolution	improvement of the different technologies?	share of the different heating & cooling technologies (eg
Cooling	the different end – uses	for heating, cooling & hot water demand ?	• Which levels of compactness of houses	Individual boilers, district heating)?
	Number of	• What's the impact of	residential sector?	• What are the implications
Hot Water	households and total value added	behavioral changes on the different end-uses?	• How fast can buildings be	of the fuel & technology shifts in terms of energy
	of services sector	• What are possible demand	renovated?	consumption?
Lighting, appliances & cooking	 Based upon recent literature and available 	evolutions for electric appliances & lighting?	 What level of demolition /new buildings will be realistic? 	
	data sources	What is possible for 2050?	What will the situation look like in 2020/30/40/50 ?	Which are the practical implications?

In practice, 4 main group of factors are covered to test the potential for decarbonizing the heating/cooling of building sector

Evolution of the population & Number of dwellings; Evolution of the services sector (value added)

In practice, 3 main group of factors are covered to test the potential for decarbonizing the electric appliances in the building sector

Evolution of population & number of households; Evolution of the services sector (value added)

4 ambition levels are defined for each lever

Level 1	Level 2	Level 3	Level 4
 Minimum effort (following current regulation) No additional decarbonisation efforts/policies What will become a « Reference scenario » 	 Moderate effort easily reached according to most experts Equivalent to the development of recent programs for some sectors 	 Significant effort requiring cultural change and/or important financial investments Significant technology progress 	 Maximum effort to reach results close to technical and physical constraints Close to what's considered reachable by the most optimistic observer
4	m		•

One of the key objectives of the expert Working Groups is to support the estimation of these levels based on existing expertise

Besides the ambition levels, key parameters determining the cost of these levers are also assessed

	Costs modelled	Cost type impacted by these levers
1. Behavior	 No investment costs are modelled 	Overall energy bill
2. Efficiency level of building envelope	 ✓ Investments costs of different insulation levels (heat demands) for existing & new buildings – per heated floor area [m²] × Cost of awareness raising campaigns, external costs 	 Overall energy bill Total investment costs required for efficiency level
3. Efficiency level of appliances	 ✓ General investment costs of overall efficiency improvements [€/kWh reduction] × Cost of awareness raising campaigns, external costs, 	 Overall energy bill Total investment costs required for efficiency level
4. Heating/Cooling technologies	 ✓ Investment and operational costs per type of heating/cooling technology (eg. costs of heat pumps, district heating) – per kW or household × R&D costs, external costs, 	 Overall energy bill Total investment costs of heating/cooling technologies
5. Urban planning	 ✓ Investment costs of new dwellings vs flats: investment costs per heated floor area – per heated floor area m² 	 Overall energy bill Total investment costs of new housing stock
4		4
1		

General working hypothesis used for the buildings

- Some of these interactions are not integrated in the modeling being used, for example :
 - Building & renovation of building depends & has an impact on the development of other sectors (transport, industry,...). Trajectories for these sectors could therefore influence the building sector & vice versa. This is not hard-coded in the model, but will be kept in mind to develop coherent scenarios.
 - Behavioral or technical changes could have unattractive consequences (e.g. **increases of GHG emissions in other sectors or building sector** due to **rebound effect**). These are not taken into account.
 - Emissions related to **electricity production are computed in the modules related to that sector**. Emissions computed in the building module are only related to fuel consumption. But, scenarios of final **electricity consumption** are estimated in building module.
- To keep neutral compared to other sectors consuming biomass, there is no specific allocation of the biomass potential in the model. The allocation of biomass in the model is performed through a homogeneous reduction of the overall demand for fossil fuels over the different sectors based on the overall biomass potential that can be used for energy purposes.
- Buildings in the industrial sector are not estimated in the building sector, but are part of the industry module.

Drivers - Fundamentals

- Key drivers for emissions of building sector in Belgium are :
 - Population growth: increase of number of households Economic growth of services sector (expressed as added value)
 - Size and compactness of buildings
 - Evolution of heating & hot water **demand** per household (or per added value in the services sector)
 - Fuel mix of building sector and related heating technologies
 - Comfort level of the households (behavioral changes)
 - Heating degree days: assume constant level in model (1799 HDD (15/15))
- Certain factors are modeled implicitly :
 - The structure of the territory and the density of habitat (through size and compactness of dwellings)
 - Wealth of households No impact of fuel prices on demand (!)

Content – Buildings sector ideral public servic FOOD CHAIN SAFETY AND E Summary and references p. 2 Context and historical trends p. 6 Methodology p. 18 Details of the ambition levels and costs per lever p. 30 Barriers to reduce emissions p. 76

Subsectors of buildings

Heating, hot water & cooling Α.

B. Lighting & appliances

Heating of houses accounts for about 90% of fuel & electricity consumption for heating, hot water & cooling

Share of heating, hot water SHW and cooling for residential sector in Belgium in 2010

100% = 110 TWh¹ in 2010 or 23 872 kWh per household

 Heating of houses has the highest share in the total energy consumption for heating, SHW & cooling

- Heating and SHW:
 - Fuel consumption as well as
 - Electricity consumption: 7% of Belgian households use electricity as main *heating* -14% of Belgian households use it for SHW.
- Mainly electricity is used for cooling

¹ Not corrected for heating degree days

Assumptions:

Residential

Sanitary Hot Water (SHW) energy consumption of 1750 kWh/HH; Electricity consumption for cooling of 590kWh/HH

 \rightarrow Based on Belgian Energy Balance (NIR2012), derived energy consumption for heat (\neq heat demand) amounts ~22 132kWh per household.

SOURCE: NIR Belgium April 2012, VITO & ECONOTEC (Emissions heating of Buildings, 2011), Assumptions Flemish EPB methodology, VITO (Evolution heating & cooling demand, 2011)

Heating of buildings accounts for about 90% of energy consumption for heating, hot water & cooling

Share of heating, hot water SHW and cooling for services sector in Belgium anno 2010

Heating of buildings has the highest share in the total energy consumption for heating, SHW & cooling

deral public service

- For heating and SHW mainly fuels are used about 10% of fuel consumption is related to SHW
- For cooling is mainly electricity used : about 3.5% of total electricity consumption is related to cooling

¹Not corrected for heating degree days

Services

SOURCE: NIR Belgium April 2012, VITO (Energy and GHG scenarios according to REF, 2006), JRC (Electricity Consumption and Efficiency - Trends in European Union, 2009)

4 main group of factors are covered to test the potential for decarbonizing the heating/cooling of building sector

ederal public service

Evolution of the population & Number of dwellings; Evolution of the services sector (value added)

Population is projected to increase with 21% between 2010 and 2050 by the Federal Plan Bureau

Evolution of number of households and inhabitants for Belgium between 2000 and 2050

- Projections based on **Projections Federal Plan** Bureau 2060 (inhabitants) & 2020 (households) (own linear extrapolation for HH between 2020-2050)
 - Number of inhabitants 2010-2050: +21%
 - Number of households¹ 2010-2050: +44%.
 - Decrease of person/HH 2010-2050: 2,35 to 1,97
- Expected increase in energy consumption by 2050 if no measures or behavioral changes: + 44%

Demographic evolution reflects number of housing units: New houses – Existing houses - Demolition

Evolution of number of housing units for Belgium between 2010 and 2050

Assumption: current rate of demolition, namely 5024 demolitions of housing units per year
 (= Doubled current number of registered demolitions = 2512 per year)

The added value realized by the services sector is projected to increase with 109% between 2010 and 2050.

Evolution of the total added value of the services sector in Belgium, compared to 1995

<u>Services</u>

- Projections 2010-2020: based on Projections Federal Plan Bureau 2020; Average annual growth of 2.3%
- Projections 2020-2050: Based on general GDP Projections of Studiecommissie Vergrijzing:
 - 2020/2030: 1.8% per year
 - 2030/2050: 1.7% per year
- Evolution of added value between 2010-2050: +109%
- No perfect 1-to-1 relationship between evolution of energy consumption for heating/cooling and added value: correction by elasticity

Expected increase of energy consumption for heating/cooling between 2010 - 2050, if no measures or behavioral changes: + 22%

SOURCE: Federal Plan Bureau (Projections 2020), Studiecommissie Vergrijzing (Annual report 2011), VITO

Performance of the building envelope

Evolution of the population & Number of dwellings; Evolution of the services sector (value added)

Heat demand of the residential sector – Some key parameters for which 4 levels have to be determined

Definition:

Residential

- Heat demand is the net energy consumption of a house.
- Final energy demand takes the energy efficiency of the heating installation also into account (= fuel or electricity consumption).
- Current performance of the building envelope is different for:
 - New houses: built after 2010 versus
 - Existing houses: built before 2010
- Key parameters in determining the heat demand of the housing stock in OPE²RA:
 - Evolution of heat demand [kWh] per heated floor area [m²] for
 - New houses
 - Renovated houses
 - Evolution of renovation rate
 - Evolution of heated floor area [m²] of new houses , which is dependent on the share of flats ~ urban planning

Explanations of the 4 levels for "final energy demand for heating per heated floor area for newly built & renovated stock"

entia			federal public service HEALTH, FOOD CHAIN SAFETY AND ENVIRONMENT
Reside	Level 1 – Minimum effort	 Renovation: minor changes - application of one to three low cost or easy implement measures resulting in a heat demand of 111 kWh/m². 	to
		 New houses: Starting from current EPB legislation (99 kWh/m²) in 2010, t demand of a dwelling will decrease until the level of a 'very low energy he (30kWh/m²) by 2020. 	he final ouse'
	Level 2	 Renovation: moderate renovation level (99 kWh/m²) 	
		 New houses: Starting from current EPB legislation (99 kWh/m²) in 2010, t of a dwelling will decrease until the level of a 'very low energy house' (30 2020 and until the level of 'a passive house' (15kWh/m²) by 2040. 	he final demand kWh/m²) by
		 Renovation: strong renovation – low energy house (60 kWh/m²) 	
	Level 3	 New houses: Starting from current EPB legislation (99 kWh/m²) in 2010, th a dwelling will decrease until the level of a 'very low energy house' (30kW until the level of 'a passive house' (15kWh/m²) by 2030. 	ie final demand of h/m²) by 2020 and
		 Renovation into very low energy house (30 kWh/m²) 	
	Level 4 – Maximum effort	 New houses: Starting from current EPB legislation (99 kWh/m²) in 2010, t demand of a dwelling will decrease until the level of a 'passive house' (15 2020. 	he final kWh/m²) by

Visualisation of the 4 considered levels of "final energy demand for heating per heated floor area for newly built & existing stock"

Residentia

New houses – see also next slide: different levels of introduction speeds

ederal public service

Heat demand of existing house in 2010: based on Belgian Energy Balance 2010 (NIR 2012), assuming SHW energy consumption equals 1750 kWh/HH & average heated floor area of 124m².

Visualisation of the 4 considered levels of "final energy demand for heating per heated floor area for **newly built stock**"

Different levels of speed of the introduction of 'passive houses (15 kWh/m²)'

ederal public service IEALTH, FODD CHAIN SAFETY AND ENVIRONMENT

tiol lot	Explanations	of the 4 levels for "renovation rate per year"
seider		HEALTH, FOOD CHAIN SAFETY AND ENVIRONMENT
	Level 1	 Current renovation rate of 1% per year until 2050. In 2050, 40% of all houses will be renovated.
	Level 2	 A renovation speed of about 1.5% per year between 2020 and 2050. Between 2010 and 2020, the rate increases smoothly up to the level of 2020.
		•
	Level 3	 A renovation speed of 2% per year from 2020 onwards. This speeds is twice as high as the current renovation speed.
	Level 4	 Almost all houses are renovated in 2050 (except eg. historic buildings). Therefore, a renovation speed of about 2.6% per year is required between 2020 and 2050.

SOURCE: Building permits of renovation; Kadaster Belgium 2010; VITO

Visualisation of the 4 considered levels of "renovation rate per year"

Residential

Surface & compactness of new houses

Evolution of the population & Number of dwellings; Evolution of the services sector (value added)

The heated floor area of new dwellings is about 100m² larger than the area of existing dwellings

Heated floor area of Belgian houses: new versus existing flats & dwellings, [m²]

 \rightarrow Acceptable sizes for new houses built between 2010 and 2050?

Definition of dwelling: detached, semi-detached or terraced house. Definition flat: housing unit within an apartment building. Definition of house: flat or dwelling.

Residentia

 The average heated floor area of an existing house anno 2010 (mixture of flats and dwellings) is about 124m².

- Flats have an average floor area of about 99 m².
- Dwellings have an average floor area of about 134 m².
- New houses: The average heated floor area of a current new dwelling is about 233m²; for flats about 111m².

Given the expected scarcity of available land for buildings and the evolution to smaller households, the heated floor area of new dwellings will decrease.

Based on the observed evolutions of the floor area in the Flemish new houses 2006-2010:

- The heated floor area of new dwellings will decrease with 0.8% per year between 2010-2030. From 2030, we assume that the heated floor area will remain constant (198 m²).
- The heated floor area of flats will remain constant until 2050 (111 m²).

The Belgian housing stock has a high share of (semi-) detached dwellings

Evolution of dwelling types in Belgium between 1992 and 2010, [% of total housing units]

Share of flats in newly built houses (*source: Building permits*): Average share 2004-2011: 53% - Average increase 1,2% per year

48

Explanations of the 4 levels for "compactness of new houses determined by yearly share of flats"

Residentia

Visualisation of the 4 considered levels of "yearly share of flats" Residential federal public service HEALTH, FOOD CHAIN SAFETY AND ENV 90% 80% % share of flats (newly built) 70% 60% Level 4 50% Level 3 40% Level 2 30% Level 1 Current level 20% 10% 0% 2010 2015 2020 2025 2030 2035 2040 2045 2050

SOURCE: Building permits 2004-2011; VITO

Behavioral changes

Evolution of the population & Number of dwellings; Evolution of the services sector (value added)

	4 levels for "	'hot water demand"
Residentia	Level 1	20% increase in hot water demand per household in 2050. This reflects the impact of economic growth leading to an increased use of hot water, and a larger number of hot water using appliances.
	Level 2	Keep hot water demand per household at current level , namely 1202 kWh/HH.
	Level 3	20% decrease in hot water demand per household in 2050.
1	Level 4	There is a 50% decrease in hot water demand per household in 2050. This is thought to be the limit that could be achieved with greater consumer awareness of hot water efficiency, and more water efficient fittings.

SOURCE: Assumptions EPB software Flanders (protected volume 400m³) – DECC - VITO

4 levels for "cooling demand"

ntial

Keside	Level 1	It is assumed that 60% of the household in Belgium has air conditioning by 2050 , in response to increased wealth. This means an increase of 56% of the total share of cooling compared to 2010. Cooling demand per HH remains at current level, namely 1460 kWh/HH.
	Level 2	It is assumed that 40% of Belgian households has air conditioning by 2050 . Cooling demand per HH remains at current level, namely 1460 kWh/HH.
	Level 3	It is assumed that 20% of Belgian households has air conditioning by 2050 . Cooling demand per HH remains at current level, namely 1460 kWh/HH.
	Level 4	Keep total cooling demand of Belgium constant at current level : 4% of households has an average cooling demand of 1460 kWh/HH.
	/	

SOURCE: VITO (Evolution heating & cooling demand, 2011) - DECC

ial	4 levels for "average internal temperature, reflecting households preferences".				
Resident	Level 1	Average internal temperature in households rises to 20°C by 2050 , representing a significant increase of 2°C. This is in response to increased wealth.			
	Level 2	Average internal temperature in households rises to 19ºC by 2050 .			
	Level 3	Average internal temperature in households keeps constant at current level , namely 18ºC.			
	Level 4	Average internal temperature in households falls to 16°C by 2050 , representing a significant decrease of 2°C. The effect that internal temperature has on comfort and health varies depending on the type of occupant, activity levels and clothing. The evidence shows that 16°C is a safe minimum in occupied rooms for vulnerable groups.			
1	SOURCE: BIM, DECC	54			

Evolution of heating & cooling technologies

Evolution of the population & Number of dwellings; Evolution of the services sector (value added)

Characteristics of 3 types of heating technologies

federal public service EALTH, FOOD CHAIN SAFETY AND ENVIRONMENT

	Share 2010	Share 2010	Technical or max.		
	Heating	SHW	Potential in 2050		Limited by
Gas boiler (old)	42%	42%	90%	Conventional	space
Gas boiler (new)	8%	8%	90%	┝	availibility
Solid-fuel boiler	4%	4%	75%		
Oil-fired boiler (old)	37%	30%	75%		Largest feasibility in
Oil-fired boiler (new)	1%	1%	75%		rural &
Resistance heating	7%	14%	100%	Electric	urban areas
Air-source heat pump	1%	1%	100%		Limited by
Ground-source heat pump	1%	1%	55%	٦	gas
Stirling engine µCHP	0%	0%	90%	Innovative	network
Fuel-cell µCHP	0%	0%	90%		Largost
Geothermal	0%	0%	45%		feasibility
Community scale gas CHP	0%	0%	45%		in urban
Community scale solid-fuel CHP	0%	0%	45%	J	areas
DistPict The atting from Dowerstation	ngss 0% Iding sector, 201	1), VIT O% /Iilieukostenr	no 45% uishoudens)		5

16 possible combinations of technologies in 2050 are modeled

- Share of different heating technologies depends on two parameters:
 - Electrification level: 4 levels

Residential

- 'Conventional' versus 'Innovative technologies': 4 levels
- 16 possible combinations of heating technologies.

Services sector is modelled in less details due to limited data availability and subsector heterogeneity

HEALTH, FOOD CHAIN SAFETY AND ENVIRONMENT

Evolution of the population & Number of dwellings; Evolution of the services sector (value added)

Explanations of minimum & maximum efforts for "heating & cooling demand per added value" by 2050

- Heating demand:
 - Application of low cost/easy to implement measures or the implementation of current EPB regulation for new buildings.
 - Same evolution as assumed for the residential sector: a reduction of 13% compared to the level of 2010.
- SHW demand: this demand will remain constant
- Cooling demand: today almost 66% of the floor space of offices has active cooling. In 2050, we assume that **90% of the offices will be actively cooled (+25%)**.
- Heating demand:
 - Evolution to passive buildings
 - Same evolution as assumed for the residential sector: a reduction of 85% compared to the level of 2010.
- SHW demand: this demand will remain constant
- Cooling demand: the fraction of non-residential floor space with airco is reduced by 50% due to increase in the use of passive cooling systems. Nearly all new build airco is achieved through passive design measures, achieving a **90% reduction in cooling demand** compared to the level of 2010.

Level 1 –

Minimum effort

Services

SOURCE: DECC, VITO (Evolution heating & cooling demand, 2011), VITO

Visualisation of minimum & maximum efforts of "heating & cooling demand per added value" by 2050

Energy consumption for heating, cooling & SHW per added value in 2010 & 2050, [GWh/M€]

Note: heating demand expressed in 1799 heating degree days

Source: NIR Belgium April 2012; Federaal planbureau; VITO (Energy and GHG scenarios according to REF, 2006); JRC (Electricity Consumption and Efficiency - Trends in European Union, 2009)

ederal public service

HEALTH, FOOD CHAIN SAFETY

Black & white appliances have highest share in electricity consumption for household appliances & lighting

Share of different end-uses in final consumption

- Lighting demand per household : 365 kWh electricity consumption per household in 2010
- White appliances demand per household: 1140 kWh electricity consumption per household in 2010
- Black appliances demand per household: 1160 kWh electricity consumption per household in 2010
- *Electric cooking* demand per household:200 kWh electricity consumption per household in 2010

Residentia

Explanations of minimum & maximum efforts for "demand for lighting & appliances per household" by 2050

deral public service EALTH, FOOD CHAIN SAFETY AND ENVIRONMEN

Level 1

Residential

If we do not make much effort to reduce demand further in this sector, a

hypothetical trajectory could involve the following:

• Total demand for energy for lighting could stabilize at today's levels as efficiency levels continue to improve as they have in the past;

• Demand for white appliances could increase very slightly in line with historic trends: +10% increase in demand.

- Demand for energy for black appliances could increase by 15% by 2050;
- Demand for energy for cooking could remain stable at current levels.
- There may be no significant change in the way we manage our use of lighting or appliances.

At the extreme end, we could possibly decrease demand in 2050 by 40%. Eg.:

• We could replace all lights with extremely efficient lights (such as LEDs at 75 lumens/watt): about 50% decrease in demand;

• We could replace all cold appliances with extremely efficient cold appliances by 2050 (each appliance uses about 80% less energy through technological improvements).

•When replacing our consumer electronics and home computing products, we could adopt only the best practice products until 2050: about 50% decrease in efficiency. But we assume an increase of the implementation level of 50% (~level 1).

•We could use 15% less energy through more careful use of lighting and appliances.

Visualisation of minimum & maximum efforts of "demand for lighting & appliances per household" by 2050

Electricity consumption for lighting, white & black appliances, cooking per household in 2010 & 2050, [kWh/HH]

Residential

SOURCE: Energy balances of 2010 for Flanders, Wallonia and Brussels (Wallonia & Brussels extrapolated based on 2009); DECC; SERPECC

EALTH EDOD CHAIN SAFETY AND E

3 types of demands modelled for the services sector

Share of different end-uses in final consumption

- Office lighting demand per added value: 0,0363 GWh electricity consumption per M€ added value in 2010
- Street lighting demand per added value: 0,0048 GWh electricity consumption per M€ added value in 2010
- Demand for appliances per added value: 0,0893 GWh electricity consumption per M€ added value in 2010

Services

Explanations of minimum & maximum efforts for "demand for lighting & appliances per added value" by 2050

HEALTH, FOOD CHAIN SAFETY AND ENVIRONME

Level 1

Services

- Office Lighting: this demand will stabilize at today's levels as efficiency levels continue to improve as they have in the past.
- Street lighting: this demand will remain constant.
- Appliances: the electricity consumption for appliances will growth with 25% between 2010 and 2050, because of an increasing implementation degree.

Office Lighting: demand for lighting per added value could halve by 2050 through, for example, the increased use of LEDs instead of other, less efficient lighting technologies and through the use of motion detective lighting.

- Street lighting: this demand will remain constant.
- Appliances: through increasing adoption of more efficient technologies, we could reduce electricity consumption by a quarter by 2050.

SOURCE: DECC, VITO

Visualisation of minimum & maximum efforts of "demand for lighting & appliances per added value" by 2050

Electricity consumption for lighting & appliances per added value in 2010 & 2050, [GWh/M€]

Services

Investments, operations and fuel costs are included, not externalities

Fuel costs evolutions are covered in the energy supply sector

		Investments	0&M	Fuels	Externalities
	Behaviour changes	n/a			- Impact of climate
		 Refurbishing (insulation, windows, etc.) 	- Maintenance based on	- Consumption volumes	change
	Energy efficiency	Replacing heaters/boilers	technology distribution	- Takes fuel shift into	- Air quality (cost on
		 Replacing electric appliances 	- Information campaigns,	account	health and reduction in
		Improvements of appliances by manufacturers (R&D)	trainings,	- Taxes on fuels	life expectancy)
	Electrification	Replacing boilers			- Congestion costs
	Bahaviaur changes /	 Vehicles (cars, buses, trains, trucks, boats) 		- Consumption volumes - Takes fuel shift into account - Taxes on fuels	(transport)
	evolution of the organization of society	 Rail infrastructure 			- Reduction in noise
		Costs related to the structure of the territory (for	- Maintenance based on		disturbances (transport)
$\neg \square$		example a reduction in the cost of maintaining roads)	technology distribution		- VISUAI Impact
	Energy officiency	 Cost of the replacement of the fleet over time 	- Information campaigns, trainings,		(eonennes)
	Energy enherity	 Improvement of fleet efficiency by manufacturers (R&D) 			resources
	Electrification	 Replacement by electric vehicles (batteries included) 			- Preservation of fossil
		Cost of the electric charging infrastructure			fuel ressources
\sim	Carbon intensity	Investments to improve carbon intensity (new products		- Consumption volumes	- Dependance on new
		or processes, energy efficiency, cogeneration, etc.)	- Maintenance based on	- Takes fuel shift into	ressources
	ccs	 Equipment to capture, transmit and store CO2 	technology distribution	account	- Impact on biodiversity
		Cost of R&D of developing CCS		-Funcioning of CCS	services
		 All production plants (wind or gaz turbines, etc.) 			- Reduction/increase in
	Electricity	 Electric transmission network, back-up plants 		- Biomass, fossil fuels	nuclear risk
		 Distribution network (simplified approach) 	- Maintenance based on	and electricity imports	- Impact of energy
1XT		 Cost of CCS for electricity 	technology distribution	- Cost of producing	(in)dependence (reducing
TT'		Cost of R&D for geothermal systems		biomass	the impact of oil crises,
	Biomass	 Biomass transformation plants 			etc.)

Included

Non-included

Source: BPIE (Europe's buildings under the microscope, October 2012), CERAA 2008, SEI 2009, VEA Evaluatienota ERP 2010
Investment ranges for the different heating technologies in the residential sector

Residential

	Investment cost [€2010] per household		Average size of installation per HH
	Low	High	kW
Gas boiler (new)	4150	5099	20
Resistive heating	1880	3600	20
Oil-fired boiler (new)	4420	6868	20
Solid-fuel boiler	9125	13185	20
Stirling engine μCHP	6234	12468	1 kW _{electric}
Fuel-cell µCHP	6234	12468	1 kW _{electric}
Air-source heat pump	9000	12600	14
Ground-source heat pump	14000	14575	11
Geothermal	9435	17913	20 kW _{heat}
Community scale gas CHP	12987	21465	20 kW _{heat}
Community scale solid-fuel CHP	12987	21465	20 kW _{heat}

District heating from power stations¹ 4987 13465 Only cost of distribution network – cost of electricity production = cost of energy production sector $20 \text{ kW}_{\text{heat}}$

² Sum of investment costs related to network & CHP. Concerning costs of CHP, only costs related to heat production (~66% of total investment cost of CHP) are considered.

Source: VITO & ECONOTEC 2011, Times Belgium, DECC, VITO (MKM Huishoudens), ...

Investment cost for the services sectors

- Investment ranges of heat demand & heating technologies
- \rightarrow Can we consider them at the same level as the residential sector?
- Cost per m² of heated floor area &
- Cost per kW

We will assume the costs for the services sector are on average 10% lower compared to investment ranges of the residential sector. (economy of scale).

What about evolution of costs of the different technologies & measures in time?

- The differences in costs between a new 'current EPB house' and a 'passive house' can be very low (eg. low cost levels in slide 93 – difference of 4%). This difference mainly reflects that a house is more than a mixture of efficiency measures (eg. comfort, kitchen, ...) and that the 'learning costs' of the reduction technology 'passive' can be very small.
- Concerning renovation of houses, the costs of reduction measures are mainly related to the materials (eg. insulation) and the labour costs for installing these materials. The expected learning effects at this level are rather small. On the other hand, a positive impact due to increasing volumes of activity in the building sector is possible for all efficiency measures (cfr. *BPIE Europe's buildings under the microscope*).
- In our OPEERA model, the use of ranges of price levels (low high) is a good way of dealing with this uncertainty. For district heating, you can expect that the costs will decrease in time, but at the moment the cost estimations of this technology are very uncertain due to the lack of Belgian specific data (lack of practical experience).

➔ Therefore, we assume no evolution of the cost levels in time.

Content – Buildings sector

Summary and references p. 2 Context and historical trends p. 6 Methodology p. 18 Details of the ambition levels and costs per lever p. 30 Barriers to reduce emissions p. 76

Barriers to remove to ensure sufficient decarbonisation of Buildings

A global vision needs to be developed for building policies in Belgium

For example:

•Important role of urban planning in the evolution of district heating, dwelling types, insulation level etc.

•The level of insulation standards will impact the profitability of heating technologies

•Stimulating the implementation of reduction measures for all target groups (eg. tenants versus proprietors)

Work is required on organizational, psychological and behavioral levels

For example:

Households and the services sector experience non-economical thresholds (eg. time, intransparancy of market)
Historical observations show an increasing demand for hot water and cooling
High share of detached houses or a high floor area requires a high heating demand
Availability of work forces in the building sector

Belgium is dependent to other evolutions at the international level

For example:

Energy prices have a large impact on the technology/fuel choices of policy and consumers.

- •Innovation level of technologies (eg. lighting) will be exploited at global level .
- •Legal competences concerning buildings and GHG emissions are spread between various power levels at EU, federal, regional, provincial and municipality level. A large coordination effort is required between various entities.

Barriers discussed during the expert workshop

- Poverty, mainly in urban areas social justice
- Good financing models for deep renovations
- Requirement of raising public awaraness of consumers
- Devaluation of existing building stock due to strong energy requirements
- System and long term approach at & between different government levels
- Importance of local authorities (eg. Building regulation can be a barrier for energy renovations etc.)
- Limited number of manpower in the building sector + proper education of workers
- Need for adaptation of electricity network
- Coherent spatial planning:
 - improve location of services, roads, buildings
 - Evolution towards smaller lot for buildings
- Solve owner/tenant-problem: need for stimulation of owners to renovate their property

Thank you.

Nele Renders – 014 335835 – <u>nele.renders@vito.be</u> Julien Pestiaux – 0471 96 13 90 – <u>jpe@climact.com</u> Erik Laes – 014 335909 – <u>erik.laes@vito.be</u>

