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We present the first frequency-dependent analyses of the geographic smoothing of wind power’s

variability, analyzing the interconnected measured output of 20 wind plants in Texas. Reductions in

variability occur at frequencies corresponding to times shorter than �24 h and are quantified by

measuring the departure from a Kolmogorov spectrum. At a frequency of 2.8�10�4 Hz (corresponding

to 1 h), an 87% reduction of the variability of a single wind plant is obtained by interconnecting 4 wind

plants. Interconnecting the remaining 16 wind plants produces only an additional 8% reduction. We use

step change analyses and correlation coefficients to compare our results with previous studies, finding

that wind power ramps up faster than it ramps down for each of the step change intervals analyzed and

that correlation between the power output of wind plants 200 km away is half that of co-located wind

plants. To examine variability at very low frequencies, we estimate yearly wind energy production in

the Great Plains region of the United States from automated wind observations at airports covering

36 years. The estimated wind power has significant inter-annual variability and the severity of wind

drought years is estimated to be about half that observed nationally for hydroelectric power.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Currently 29 of the United States of America have renewables
portfolio standards (RPS) that mandate increasing their percen-
tage of renewable energy, and the lower chamber of the United
States Congress has enacted a federal renewable electricity
standard (Database of State Incentives for Renewables and
Efficiency, DSIRE, 2009; Waxman and Markey, 2009). Major
electricity markets such as California, New York, and Texas expect
wind to play a large role in meeting their RPS. As a result of the
state RPS requirements and a federal production tax credit
equivalent to a carbon dioxide price of approximately $20/metric
ton (Dobesova et al., 2005), wind power net generation is
currently experiencing very high growth rates (51% in 2008, 28%
average annual growth rate over the past decade) in the United
States (EIA, 2009).

Wind power’s variability and fast growth rate have led areas
including Cal-ISO, PJM, NY-ISO, MISO, and Bonneville power to
undertake wind integration studies to analyze if their systems can
accommodate significant (5–20%) penetrations of wind power
(CAISO, 2007; DOE, 2008; EnerNex, 2006; GE, 2008; Hirst, 2002).
Included in each integration study is how wind power variability
can be mitigated with options such as storage, demand response,
or fast-ramping gas plants. Some system operators are beginning
ll rights reserved.

: +1 412 268 3757.

).
to charge wind operators for costs arising from the integration of
high wind penetration in their system. In 2009, the Bonneville
Power Authority (BPA) introduced a wind integration charge of
$1.29 per kW per month (�0.6b/ kWh assuming a 30% capacity
factor), citing reliability risks and substantial costs encountered in
fulfilling 7% of their energy needs with wind power (BPA, 2009).

Previous studies have shown that interconnecting wind plants
with transmission lines reduces the variability of their summed
output power as the number of installed wind plants and the
distance between wind plants increases (Archer and Jacobson,
2007; Czisch and Ernst, 2001; Giebel, 2000; IEA, 2005; Kahn,
1979; Milligan and Porter, 2005; Wan, 2001). Kahn (1979)
estimates the increased reliability of spatially separated wind
plants, writing that ‘‘wind generators can displace conventional
capacity with the reliability that has been traditional in power
systems.’’ Kahn (1979) calculates the loss of load probability
(LOLP) and the effective load carrying capability (ELCC) of up to 13
interconnected California wind plants.

Czisch and Ernst (2001) and Giebel (2000), in separate studies,
show the correlation between wind plants decreases with
distance. Each concludes wind power variability is reduced by
summing the output power from spatially separated wind plants.
Czisch and Ernst (2001) and Giebel (2000) both find that wind
plant outputs are correlated even over great distances (correlation
coefficient 40).

Milborrow (2001) shows a smoothing effect by calculating the
output power change over a certain time interval (step change) of
wind plants. He finds the 1-h power swing of 1860 MW of wind
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Fig. 1. Locations of the ERCOT wind plants from which data were obtained.
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power in Western Denmark over a 3-month period in 2001 was at
most 18% of installed capacity compared with 100% for a single
wind plant. In contrast, Bonneville Power Authority in the US
Pacific Northwest experienced a maximum 1-h step change of
63% in 2008 for their 1670 MW of wind power.

Archer and Jacobson, (2007) wrote that interconnected wind
plants would produce ‘‘steady deliverable power.’’ They use
hourly and daily averaged wind speed measurements taken at
19 airports located in Texas, New Mexico, Oklahoma, and Kansas
to estimate generation duration curves and operational statistics
of wind power arrays. They found that ‘‘an average of 33% and a
maximum of 47% of yearly averaged wind power from inter-
connected farms can be used as reliable, baseload electric power’’
(Archer and Jacobson, 2007).

The previous studies analyze wind’s variability primarily in the
time domain, using metrics such as 10-min step change
histograms, correlation coefficients, and LOLP.

Frequency domain analysis is a powerful complementary
method that can be used to characterize variability and evaluate
whether and at what frequencies smoothing occurs as more wind
plants are introduced into a system. We use Fourier transform
techniques to estimate the power spectral density (PSD) (Apt,
2007; Cha and Molinder, 2006; Press et al., 1992) and characterize
the variability of actual wind plants within ERCOT, the electricity
market serving most of Texas. We also use step change analyses
and correlation coefficients to characterize the variability of
ERCOT wind plants and wind plants modeled from wind
monitoring stations located throughout the Midwest and Great
Plains and compare our results with previous studies.

To characterize the year-to-year variations of wind power
production, we calculate the yearly output of wind power by
modeling wind plants over a span of 36 years. We examine the
existence and likely severity of wind drought years as compared
to hydroelectric power reduction by rainfall droughts.
2. Data

We use both ERCOT wind plant power output data and
National Oceanic and Atmospheric Administration (NOAA) wind
speed data for our analyses. We use 15-min time resolution real
power output data from 20 wind plants within ERCOT (Fig. 1).1
1 Electric Reliability Council of Texas (2009) Entity-Specific Resource Output.

Retrieved on 18 Feb. 2009 from ERCOT’s Planning and Market Reports. Available at

http://www.ercot.com/gridinfo/sysplan/.
The ERCOT data were obtained from ERCOT’s website. Data sets
from three wind farms with over ten days of consecutive zeros
were discarded. There were minor data dropouts in data from the
remaining 20 wind farms, but the correlation coefficients were
insensitive to exclusions of data dropout periods, so the
correlations displayed include all data. If necessary, data from
each wind plant are scaled to the end-of-the-year capacity of the
wind plant to adjust for mid-year capacity additions. We use 2008
wind power data from Bonneville Power Authority to analyze if
results similar to our ERCOT results are seen in another system.
BPA provides 5-min system wind power data on its website.2

There was 0.04% of the data missing from BPA’s 2008 wind
data set.

When examined in the frequency domain, ERCOT’s data
exhibit the Kolmogorov spectrum of wind plants as found by
Apt (2007). The Nyquist frequency, the highest frequency the data
can represent without aliasing, is 5.6�10�4 Hz (corresponding to
30 min) for ERCOT’s 15-min wind power output data.

We use NOAA ASOS 2-min resolution wind speed data to
estimate the effect of interconnecting up to 40 wind plants
throughout 7 states located in the Midwest, Southwest, and Great
Plains regions3. ASOS is a joint project among NOAA, the
Department of Defense, the Federal Aviation Administration,
and the US Navy with �1000 stations that automatically record
surface weather conditions (NOAA et al., 1998). We selected 40
stations to represent the high wind energy locations of the Great
Plains region where wind plants are currently being developed,
Archer and Jacobson (2007) analyzed a subset of this region. Each
minute, ASOS stations record wind speed and direction averaged
over the previous 2 min to the neared nautical mile per hour.
Table A1 in the Appendix lists the 40 ASOS sites we used and Fig. 2
plots their location. The average distance between the 40 ASOS
sites we use is 785 km and the median distance is 725 km.

There are three limitations to using ASOS wind speed data to
model wind plants. The first is that the data are reported as
integer knots (NOAA et al., 1998). The second is that the data are a
running 2-min average. Both the rounding and averaging reduce
the high frequencies we can resolve in the frequency domain
(Over and D’Odorico, 2002). A noise floor is evident in the power
spectral density, caused by the 1 knot amplitude resolution of the
data. The effect of averaging is a departure from the Kolmogorov
spectrum at frequencies greater than approximately 2�10�4 Hz
(periods of 90 min or shorter) that we do not observe in non-ASOS
anemometer data. The third limitation of the ASOS data set is
prevalence of bad data. In 2007, our selected ASOS sites had an
average bad data rate of 7.7%. Spencer Municipal Airport, Iowa
(KSPW) had the best data collection in our sample with a bad data
rate of 4.6% and Theodore Roosevelt Regional Airport in
Dickinson North Dakota (KDIK) had the worst with a bad data
rate of 16.5%.

We use NOAA hourly data obtained from airport sites (red
squares in Fig. 2) to study how the energy output of wind plants
varies over many years. There is significant variation in the
historical hourly data sets of the 40 airports prior to ASOS
deployment in the 1990s. Some airports recorded wind speeds
every third hour and only during the day. Data dropouts of
months to years are present in the majority of the data sets. We
used only the 16 airports out of the 40 that had hourly wind speed
data from 1973 to 2008 and did not have a data dropout greater
2 Bonneville Power Authority wind generation in balancing authority.

Retrieved May 6, 2009. Available at http://www.transmission.bpa.gov/business/

operations/wind/.
3 See Table A1 in the Appendix for a list of specific sites. Data are available at

ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/.

http://www.ercot.com/gridinfo/sysplan/
http://www.transmission.bpa.gov/business/operations/wind/
http://www.transmission.bpa.gov/business/operations/wind/
ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/
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Fig. 2. Locations of the airports from which data were obtained.
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than 5 days. The 16 sites are listed in Table A2 in the Appendix
and had an average missing data rate of 13%.
3. Methods

3.1. Interconnecting wind plants

We simulate wind plants interconnected with uncongested
transmission capacity (sometimes called the copper plate
assumption) by summing together either ERCOT wind plant
power output data or NOAA airport wind speed data (taken at 8 or
10 m, depending on the station) scaled up to 80 m and
transformed to power with a cubic curve (Eq. (1)) that provides
a good match to observed data from 1.5 MW turbines and
turbine-mounted anemometer data.

PðtÞ ¼

341�277vwindþ62v2
wind�2:5v3

wind

1500

0

if

vwindZ2:9m=s and vwindo14m=s

vwindZ14m=s

vwindo2:9m=s

8><
>:

ð1Þ

Previous work indicates that wind power variability can be
reduced by either increasing the number of wind plants or
increasing the distance between wind plants. For our step change
and frequency analyses, we add stations together according to
their location. We select an ERCOT wind plant as the starting
point, calculate the distance to each of the other stations using a
WGS-84 ellipsoidal Earth, and sort the results from closest to
farthest wind plant (Vincenty, 1975). We simulate interconnected
wind plants by adding the closest wind plant’s power to the
system, perform step change and PSD analyses, and repeat until
all wind plants have been interconnected. The same method is
used to add ASOS stations together by distance.

3.2. Missing data

The 1-min ASOS and hourly NOAA data sets are incomplete.
For the ASOS data, we treat missing data as follows. If the length
of the missing data segment is less than 3 min, then the missing
data is filled in by interpolating between the 2 closest points. Any
missing data segments longer than 3 min are excluded from the
summed result.

For the NOAA hourly data set used for the wind drought
analysis, any missing data segments with a length of 3 h or less
are filled in by interpolating between the 2 closest points. Any
missing data segments with a length greater than 3 h but less
than 120 h are filled in using average wind speeds calculated from
the previous four weeks for each hour of the day. We then take
the time of day average segment that coincides with the missing
data segment and scale it to match its boundaries with the
boundaries of the surrounding good data segments. Any data set
that has a missing data segment longer than 120 h is excluded.

3.3. Scaling wind data to hub height

The airport wind speed measurements were taken at heights of
8–10 m and are scaled up to 80 m before being transformed to
power data. We use a logarithmic velocity profile to estimate
wind speeds at a hub height of 80 m (Eq. (2); Seinfeld and Pandis,
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2006). The logarithmic velocity profile assumes the surface layer
is adiabatic. The logarithmic velocity profile depends on a surface
roughness length that characterizes the boundary layer near the
ASOS station; we use z0¼0.03 m.

u�ð80mÞ ¼
u�
k

ln
80

z0
ð2Þ

where

u� ¼
ku�ðhrÞ

ln hr

z0

hr is the reference height, z0 the surface roughness length, and
k�0.4 (von Karman constant).

3.4. Correlation analysis

Correlation between power output time series of two wind
plants can be quantified by Pearson’s correlation coefficient:

r¼
P

iðxi�xÞðyi�yÞ

sxsy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðxi�xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðyi�yÞ2

q ; ð�1rrr1Þ ð3Þ

Power outputs of two wind plants that rise and fall in relative
unison have r near one, and little smoothing takes place. A
correlation coefficient near zero indicates that wind power
outputs vary independently of each other. A negative correlation
coefficient, although not seen in the data, would indicate antic-
orrelation between wind power outputs such that high power
output from one wind plant is associated with low power output
from the other; maximum smoothing would occur if r¼�1.
Previous studies have shown that as the distance between wind
plants increases, the correlation between their outputs decreases.
The standard deviation of summed time series signals is
dependent on the correlation between each individual time series
signal (Eq. (4); Giebel, 2000).

s2
sum ¼

1

N2

X
i

X
j

sisjcorrij ð4Þ

3.5. Step change analysis

The most common time domain method used in wind power
studies is a step change analysis (see for example Wan, 2001,
2004) where the change in power for a given time step is
calculated and either reported as power (e.g. MW) or as a
percentage of the rated capacity of a wind plant (Eq. (5)). We
calculate step changes as a percentage of the maximum power
produced by a wind plant or summed plants (Eq. (6)).

DP¼ PðtþtÞ�PðtÞ or DP¼
PðtþtÞ�PðtÞ

PNameplate capacity
� 100 ð5Þ

DP¼
PðtþtÞ�PðtÞ

maxðPÞ
� 100 ð6Þ

We calculate step changes at 30-, 60-min and 1-day time
intervals because they are important to ancillary services and
day-ahead electricity markets. We plot the maximum step change
observed versus the distance from the original starting wind plant
to the next wind plant interconnected.

3.6. Frequency domain

To characterize the smoothing of wind power’s variability as a
function of frequency as wind plants are interconnected, we
analyze wind power in the frequency domain. Our results can be
used to help determine the most economical generation portfolio
to compensate for wind’s variability. For the Texas wind plant
data, we compute the discrete Fourier transform of the time series
of output in order to estimate the power spectrum (sometimes
termed the power spectral density or PSD) of the power output of
a wind farm.

One of the attributes of power spectrum estimation is that
increasing the number of time samples does not decrease the
standard deviation of the PSD at any given frequency fk. In order
to take advantage of a large number of data points in a data set to
reduce the variance at fk, the data set may be partitioned into
K time segments. The Fourier transform of each segment is taken
and a PSD constructed. The PSDs are then averaged at each
frequency, reducing the variance of the final estimate by the
number of segments (and reducing the standard deviation by
1=

ffiffiffiffi
K
p

). The length of a data set determines the lowest frequency
that can be resolved and segmenting increases the lowest
frequency we are able to resolve in a signal by a factor of
K (Apt, 2007; Press et al., 1992). Since we wish to characterize
wind power variability in the time range of current market
operations (24 h–15 min), the decreased ability to examine
frequencies corresponding to very long times is a small price to
pay for the decreased variance.

A Fourier transform requires evenly sampled data points to
transform a signal from the time domain to the frequency domain.
The Texas wind plant output data are complete for the time
period (2008) examined. However, the ASOS data have significant
gaps. For example, the longest continuous data segment for one
ASOS station was 42 days and the longest coincident continuous
data segment of the 40 summed ASOS stations was 12 h. The high
percentage of missing data would limit our frequency analysis in
two ways. First, we would be able to use only the 12 h of
coincident continuous good wind speed data. Second, we would
not be able to use segmenting to reduce the variability of the
ASOS PSDs because the length of the coincident continuous good
data is so short. To overcome the limitations imposed by the high
percentage of missing ASOS data we calculate PSDs by using a
Lomb periodogram instead of a periodogram estimated using a
Fourier transform. The Lomb periodogram (Lomb, 1976) was
developed for use in intermittent astrophysics data (Eq. (7)) and
does not require evenly sampled data points to calculate the PSD
of a signal. Instead of calculating the Fourier frequencies of a
signal, it applies a least-squares fit of sinusoids to the data to
obtain the frequency components. The time delay component t in
Eq. (7) ensures the frequencies produced by the Lomb period-
ogram are orthogonal to one another. We implement the Lomb
periodogram by using the algorithm of Press et al. (1992).

Lomb Periodogram PNðoÞ ¼
1

2s2

P
jðhj�hÞcosoðtj�tÞ

h i2

P
j cos2oðtj�tÞ

8><
>:

þ

P
jðhj�hÞsinoðtj�tÞ

h i2

P
j sin2oðtj�tÞ

9>=
>;

ð7Þ

Subject to the constraint:

tanð2otÞ ¼
P

j sin2otjP
j cos2otj

In computing the PSDs, we use 8 segments for the ERCOT data
and 32 segments for the ASOS data to reduce the variability of
using a year’s worth of data. The algorithm used to implement the
Lomb periodogram requires two factors, ofac and hifac, to be
defined for each signal. The first factor, ofac, is an oversampling
factor that we set to 6 for ASOS data and 1 for ERCOT data. The
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second factor, hifac, determines the highest frequency the
algorithm is able to resolve. We calculate hifac for each signal
to produce the correct Nyquist frequency.

Kolmogorov (1941) proposed that the energy contained in
turbulent fluids is proportional to the frequency of the turbulent
eddies present in the fluid, E a f b, with b¼�5/3. Apt (2007) has
shown the power spectrum of a wind plant’s power output
follows a Kolmogorov spectrum between frequencies of 30 s and
2.6 days. We expect departures from Kolmogorov of bo�5/3 if
any smoothing occurs when wind plants are interconnected. As
wind plants are interconnected we estimate b by linearly
regressing the log of the PSD of the summed wind power
between the frequencies of 1.2�10�5 and 5.6�10�4 Hz
(24 h–30 min).

Kolmogorov’s relationship is valid for wind only for frequen-
cies corresponding to times of approximately 24 h or less. It has
been shown the spectra of wind speed turbulence flatten for
longer frequencies, indicating wind has constant energy in its
lower frequencies (longer than a few days) (Jang and Lee, 1998).
We use a modified von Karman formulation (Eq. (8)) for wind
speed turbulence spectrum to model the power spectrum of one
wind plant over the frequency range of 43 days–30 min (Kaimal,
1972).

To estimate the smoothing arising from interconnecting wind
plants, we determine if departures from a Kolmogorov spectrum
occur in the following manner. We fit Eq. (8) to the PSD of a single
wind plant to determine a value for B.

PSDðf Þ ¼
A

1þBf�5=3
ð8Þ

As we add wind plants to the single wind plant, we fit Eq. (8) to
the resulting summed PSD to determine a value for A and produce
an appropriately scaled single wind plant model PSD. We then
compare the slope of the log of the summed PSD to the �5/3
slope of the single wind plant model in the Kolmogorov region
between frequencies corresponding to 30 min and 24 h. We
measure deviations from the spectrum of Eq. (8) by dividing the
power contained in each frequency of the summed PSD by the
power estimated in each frequency of the single wind plant
model. If no smoothing occurs when wind plants are
interconnected the result should be close to 1 for all frequencies.
If there is a reduction in variability then there will be frequencies
for which the fraction is less than 1. Finally, we use a linear
regression on the log of the fractions to display the mean fraction
response versus frequency.
3.7. Wind drought analysis

Analyzing long-term variations in wind power production is
important for system planning. If significant drought periods occur,
system planners must ensure adequate resources and renewable
energy credits (RECs) are available to cover the wind power
underproduction. Similarly, wind production that is significantly
above the long-term average may depress the market price for RECs
and increase the requirements for compensating power sources.

We use hourly NOAA data to estimate the yearly energy
production of wind turbines from 1973 to 2008. We scale the
wind speed measurements to 80 m hub heights (see scaling wind
data to hub heights section) and transform it to hourly power data
with a power curve (see interconnecting wind plants section).
A surface roughness of 0.03 m is assumed for all of the airports.
For each year the hourly power data from all 16 turbines is
summed and compared to the mean yearly power production for
the 35-year period.
4. Results

4.1. Frequency domain

In Fig. 3, we show the ERCOT PSD results for 1, 4, and 20 wind
plants using 15 min time resolution data for 2008. A single wind
plant follows a Kolmogorov spectrum (f�5/3) from 1.2�10�5 to
5.6�10�4 Hz (corresponding to times of 24 h–30 min). When
4 wind plants are added together, the power contained in this
region decreases with frequency at a faster rate (f�2.49 instead of
f�1.67). For 20 wind plants the power decreases even more rapidly
with increasing frequency (f�2.56). Adding wind plants together
does not appreciably reduce the 24 h peak. BPA’s summed wind
power (f�2.2) shows less smoothing than ERCOT’s wind power,
very likely because 17 of BPA’s 19 wind plants are located within
170 km of each other in the Columbia River gorge and BPA’s
19 wind plants are separated by at most 290 km.

The amplitude of variability of 20 interconnected wind plants
has �95% less power at a frequency of 2.8�10�4 Hz (corre-
sponding to 1 h) than that of a single wind plant (Fig. 4). The
reduction in variability has very rapidly diminishing returns to
scale, as interconnecting 4 wind plants gives an 87% reduction in
variability at this frequency and interconnecting the remaining
16 wind plants produces the remaining 8% reduction. The
maximum reductions in variability occur at the higher
frequencies and dimish as the frequency decreases until at 24 h
there is no reduction in variability (Fig. 3). Fig. 5 shows the reduction
in variability achieved as a function of the number of interconnected
wind plants for frequencies corresponding to 1, 6, and 12 h.

We calculate b (f b) for simulations where each of ERCOT’s
20 wind plants is used as the starting location and the remaining
19 wind plants are interconnected to it in order of their distance
(closest to farthest). We use the resulting 400 data points to model
the change in b due to three factors: r, the correlation coefficient
between the interconnected wind plants and the next wind plant to
be interconnected; PNameplate ratio, the ratio between the nameplate
capacity of the wind plant to be interconnected and the nameplate
capacity of the interconnected wind plants; and N, the number of
wind plants interconnected. Eq. (9) is the result of linearly regressing
the log of the change in b with the three variables (R2 is 0.77 and all
variables are significant to a 99% level).

logDb¼ 7:6rþ0:91PNameplate ratio�0:1N�8:9 ð9Þ

The PSD of 40 interconnected modeled 1.5 MW GE turbines
located throughout the Great Plains and Midwest did not depart
from a Kolmogorov spectrum. We have eliminated as a possible
cause the different time resolutions by averaging the ASOS data at
15 min intervals (the ERCOT sampling rate). It is possible that the
discrepancy between the ASOS simulated power output and the
observed ERCOT power output spectra may arise from intra-wind-
farm aerodynamic effects, but further analysis is required,
including the determination of the frequency dependence of the
smoothing as a function of wind farm size.
4.2. Generation duration curves

We have computed normalized generation duration curves for
a single ERCOT wind plant, 20 interconnected ERCOT wind plants,
and BPA’s wind power (Fig. 6). Also shown is the average
normalized generation duration curve of ERCOT’s 20 wind
plants interconnected with their nearest three neighbors and
the area encompassed by 71 standard deviation. One wind plant
has a higher probability of achieving close to its nameplate
capacity than interconnected wind plants but an increased
probability of no wind or low wind power events.
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Archer and Jacobson (2007) concluded on the basis of meteor-
ological data that interconnected wind plants spread throughout
Texas, Oklahoma, Kansas, and New Mexico would produce at least
21% of their rated capacity 79% of the time and 11% of their rated
capacity 92% of the time. The ERCOT and BPA data from operating
wind turbines do not support that conclusion. ERCOT’s 20 inter-
connected wind plants produced at least 10% of their rated power
capacity 79% of the time and at least 3% of their rated capacity 92% of
the time. BPA’s 19 interconnected wind plants produced at least 3% of
their rated capacity 79% of the time and 0.5% of their rated capacity
92% of the time. Hereinafter we define ‘‘firm power’’ for a generator as
an availability range of 79–92%.

Archer and Jacobson’s (2007) simulations produce baseload
capacity equivalents for wind power that are 2–20 times greater
than those observed in the ERCOT and BPA data. Two effects may be
responsible for the discrepancy between our results and Archer and
Jacobson’s results. The first is that Archer and Jacobson analyze a
larger geographical area than the encompassed by ERCOT or BPA. The
second is Archer and Jacobson use individual model wind turbines
while we use data from operating wind plants.

The average generation duration curve of four interconnected
ERCOT wind plants shows that a small number of interconnected
wind plants achieves the majority of the smoothing of wind
power’s variability and corresponds to the result obtained from
our power spectral density analysis. 19 BPA and 20 ERCOT
interconnected wind plants similarly achieve only 70–88% of their
nameplate capacities but BPA’s wind power has a higher
probability of low to no wind power occurances. The higher
probability of low to no wind events in BPA’s system is likely
because of the limited geographic dispersion of BPA’s wind plants
noted in the preceding section.

4.3. Pairwise correlations of wind power output

In Fig. 7 we show the correlation coefficients between pairs of
wind plants versus the geographical distance between the wind
plants, using measured 15-min wind power averages from
20 wind plants in Texas for 2008. Wind plants that are located
less than 50 km apart tend to have highly correlated power
outputs (0.7oro0.9), while wind plants located more than
500 km apart show lower correlation (ro0.3). All of the
correlation coefficients were greater than zero at the 99%
significance level (t-test).

The exponential fit shown in Fig. 7, rpexpð�distance=DÞ, has a
decay parameter D of 305 km and an intercept of r¼0.89 at zero
separation distance. A linear regression of log-transformed
correlation coefficients against distance has an R2 of 0.55 (i.e.
the exponential model explains about half of the variation in the
correlation coefficients).

Eight pairs of wind plants, between 200 and 300 km apart,
have correlation coefficients lower than 0.2 that lie below the
overall trend. These eight pairs are Delaware Mountain and
Kunitz paired with each of Woodward Mountain, Indian Mesa,
Southwest Mesa, and King Mountain (Table A2 in the Appendix).
This may reflect the influence of local topography and climate
patterns and demonstrates that geographical proximity does not
necessarily imply high correlation. Removing these eight points
increases D to 320 km; the difference between this value and that
of the full data set is not statistically significant (t-test, 95%
significance level), so the cluster of 8 points does not exert strong
leverage on the model.

Giebel (2000) performed a similar analysis for wind power in
Europe and found D to be 641 km (green line in Fig. 7). While the
current study analyzes 15-min wind energy data sampled
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Fig. 5. Fraction of a Kolmogorov spectrum of different time scales versus the number of interconnected wind plants. Interconnecting 4 or 5 wind plants achieves the

majority of the reduction of wind power’s variability. We note that reductions in wind power variability are dependent on more than just the number of wind plants

interconnected (e.g. size, location, and the order in which the wind plants are connected; see Eq. 9).
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constantly for 2008, Giebel (2000) acquired data by applying a
power curve to 10-min wind speed averages sampled every 3 h,
thus obtaining 10-min wind power averages at 3-h intervals. To
assess the distortion in cross-correlations that this difference
introduces, 1 week of 10-s wind power data for two wind plants
in Texas and Oklahoma was processed to mimic Giebel’s data as
well as that of the current study. The correlation coefficient for
10-min averages taken every 3 h was 0.31, and for consecutive
15-min averages was also 0.31. The proximity of these values
suggests that the difference in data sampling frequencies between
the current study and Giebel (2000) does not introduce distor-
tions that prohibit comparison.

Fixing the best-fit intercept for the Texas data in Fig. 7, the decay
parameter of the European model (641 km) differs from that of the
best-fit Texas model (305 km) at the 99% significance level (t-test).
The R2 of Giebel’s model applied to the Texas data is 0.05, which
reflects the poor fit of the European model to the Texas data.
A significantly higher decay parameter for wind power in
Texas would imply that more smoothing occurs over a given
distance in Texas than in Europe; however, large variation in
correlation coefficients for the European data prohibits a firm
comparison. European wind speed cross-correlation data for
December 1990–1991 has an exponential best-fit with D¼723 km
(Giebel, 2000). The correlation coefficients show a large degree of
scatter, especially in the 0–500 km region that overlaps with the
data of the current study; between 400 and 500 km, r for the
European wind speed data ranges from approximately 0.1–0.7,
while r for the Texas wind power data ranges from 0.1 to 0.3.
Assuming a similar degree of scatter in r for the resulting
European wind power time series, no significant difference
between cross-correlations of Texas and European wind power
data can be determined by comparing the current study and
Giebel (2000); the European exponential model is a poor fit for
the Texas data, but the Texas model could fit the European data
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comparably to the best-fit model of Giebel (2000), especially at
distances below 500 km.
4.4. Step change analysis

Fig. 8 shows the maximum ASOS 30-, 60-min and 1-day
percent step changes in power as a function of distance when
KCNK (Concordia, Kansas), a station close to the geographic
centroid of the ASOS airports, is used as the starting station, and
additional stations are added based on their distance from the
starting station. Fig. 9 is constructed using KMOT (Minot, North
Dakota), the station farthest from the geographical center of mass,
as the starting station.

Adding together wind plants reduces the substantial step
changes in power experienced by individual wind plants. As more
distant wind plants are interconnected, the maximum step
1000 1200 1400 1600 1800 2000
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change in power relative to the maximum power produced
reaches an asymptote of 15–30% for step changes of an hour or
less. The reductions in variability are approximately equal to
those observed by Milborrow (2001) (a maximum hourly step
change of 18%) and are less than what BPA experienced in 2008
(a maximum hourly step change of 63%). BPA’s control area
is significantly smaller than the geographic region spanned by
the 40 ASOS sites. The largest 30-min increase or decrease in
power estimated from 40 interconnected ASOS wind plants
was 15% of the maximum wind power produced. The maximum
1-day step changes are also reduced as more distant wind plants
are interconnected although a reduction of at most 20% is
achieved.

The reductions are obtained over relatively short distances
with �50% of the reductions occurring within 400 km. In Fig. 8,
93% of the reductions occur in the first 600 km and 7% occurs
between distances of 600 and 1200 km. If the reference wind
plant is at a geographic extreme rather than the centroid (Fig. 9),
93% of the reductions occur in the first 1000 km.

Fig. 10 shows the maximum ERCOT 30-, 60-min, and 1-day
percent step changes in power when ERCOT wind plant 1 (Delaware
Mountain), the wind plant farthest from the geographic centroid of
ERCOT’s wind plants, is used as the starting wind plant. Similar
reductions in variability to those simulated from ASOS data are
produced when ERCOT wind plants are interconnected. Reductions of
42% for 30-min step changes, 50% for 60-min step changes, and 16%
for 1-day step changes are achieved when wind plants within 500 km
are interconnected. The reductions for ERCOT are observed
over shorter distances than predicted by the ASOS results.
In ERCOT’s system, wind power ramps up faster than it ramps
down for each of the step change intervals analyzed. If system
operators are to match wind’s fluctuations exactly, they will need to
have a larger capacity from generators and demand response to ramp
down their power than they will require from them to ramp up.
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Fig. 11. Normalized predicted annual wind energy production from 16 wind

turbines located throughout the Central and Southern Great Plains. The normal-

ized annual hydropower production for the United States is also plotted for

comparison.
4.5. Are there wind droughts?

We estimated yearly variation in wind energy production from
modeled 1.5 MW turbines at 16 locations over the years 1973–2008
(Fig. 11). Also plotted is the annual energy produced from
hydroelectric power in the United States for the same time span.
We normalized each of the results by their mean. The standard
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Fig. 10. ERCOT step change analysis when wind plant 1 (Delaware Mountain, TX) is u

maximum step change divided by the maximum power, decreases with distance as m
deviation for the estimated wind production was 6% of the mean
energy produced per year. The largest deviation from the mean
occurred in 1988 when the estimated wind energy production was
14% more than the mean annual production. The largest negative
deviation from the mean occurred in 1998 when estimated wind
energy produced was 10% less than the mean annual production. The
standard deviation for the actual hydroelectric production was 12% of
the mean energy produced per year for the 36-year period. US
hydropower’s largest positive deviation from the mean occurred in
1997 when hydropower production was 26% above the mean. The
largest negative deviation occurred in 2001 when hydropower
production was 23% below average.

Thus, yearly wind energy production from the sample of 16
airports in the central and southern Great Plains is predicted to
exhibit long-term variations, and these are about half that
observed nationally for hydropower (we note that the bulk of
hydropower production is regionally concentrated).
5. Analysis

The variability of interconnected wind plants is less than that of
individual wind plants when measured in the time domain with step
1000 1200 1400 1600 1800 2000
nce (km)
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sed as the starting location. The relative maximum step change, measured as the
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change analyses and in the frequency domain with power spectrum
analyses. The amount of smoothing is a predictable function of
frequency, correlation coefficient, nameplate capacity ratio, and the
number of interconnected wind plants. Reductions in variability
diminish as more wind plants are interconnected. Finally, yearly wind
power production is likely to vary, and have year-to-year variations
about half that observed nationally for hydropower.

These results do not indicate that wind power can provide
substantial baseload power simply through interconnecting wind
plants. ERCOT’s generation duration curve shows wind power
reliably provides 3–10% of installed capacity as firm power (as
defined above) while BPA’s generation duration curve shows
0.5–3% of their wind power is firm power. The frequency domain
analyses have shown that the power of interconnected wind
plants will vary significantly from day to day and the results of the
step change analyses show day-to-day fluctuations can be 75–85%
of the maximum power produced by a wind plant (Figs. 8–10).

The benefit of interconnecting wind plants is a significant
reduction in the high-frequency variability of wind power.
Reductions in the relative magnitude of the 30-min and hourly
step changes will reduce the per MWh ancillary service costs of
wind energy. The reductions will also improve the root mean-
square error of wind energy forecasts for a system’s total wind
energy production but not the forecast error for individual wind
plants. Estimating the value of these benefits is difficult due to the
Table A1
Table of ASOS stations used to obtain wind speed data.

Station State Latitude

Degrees Minutes Seconds

KEST IA 43 24 29.73

KSPW IA 43 9 57.64

KMCW IA 43 9 34.76

KAMW IA 41 59 59.49

KALO IA 42 33 22.35

KDDC KS 37 46 0.28

KGCK KS 37 55 43.6

KCNK KS 39 32 57

KRSL KS 38 52 16.67

KAAO KS 37 44 51.3

KEMP KS 38 19 55.34

KGLD KS 39 22 17.239

KICT KS 37 38 59.8

KRWF MN 44 32 48.41

KRST MN 43 54 31.73

KFCM MN 44 49 42.71

KAXN MN 45 51 56.85

KBIS ND 46 46 23.07

KJMS ND 46 55 44.34

KDIK ND 46 47 46.94

KMOT ND 48 15 33.78

KFAR ND 46 55 17.62

KCAO NM 36 26 43.89

KLVS NM 35 39 15.2

KCSM OK 35 20 26.74

KFDR OK 34 21 7.5449

KGAG OK 36 17 43.94

KHBR OK 34 59 28.7

KPWA OK 35 32 3

KOKC OK 35 23 35.12

KABI TX 32 24 23.49

KAMA TX 35 13 8.52

KCDS TX 34 25 58.79

KDHT TX 36 1 20.41

KGDP TX 31 42 3.6

KLBB TX 33 39 48.86

KMAF TX 31 56 42.98

KODO TX 31 55 18.52

KINK TX 31 46 46.69

KSPS TX 33 59 19.666
proprietary algorithms used by system operators. We have
provided system planners with a metric that better characterizes
the variability of large penetrations of wind power. System
planners can then identify the resources needed to compensate
the variability and calculate the associated costs.
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Appendix

Tables A1 lists the airport sites from which ASOS wind speed
data were obtained. Tables A2 lists the ERCOT wind plants from
which wind power data were obtained.
Longitude Hourly data used?

Degrees Minutes Seconds

94 44 47.94

95 12 20.15

93 20 12.56 Yes

93 37 16.3

92 23 47.19

99 57 58.68 Yes

100 43 32.48

97 39 8 Yes

98 48 31.04

97 13 16

96 11 18.26

101 41 56.371 Yes

97 25 59 Yes

95 5 0.09

92 29 48.18 Yes

93 27 37.5

95 23 32.27 Yes

100 44 58.21 Yes

98 40 41.91

102 48 1.33 Yes

101 16 51.9 Yes

96 48 49.63 Yes

103 9 14.13

105 8 32.6

99 11 55.82

98 59 2.0727

99 46 35.125

99 3 5

97 38 49

97 36 2.64 Yes

99 41 0.66 Yes

101 42 18.84 Yes

100 17 35.28

102 32 58

106 16 34.36

101 49 22.18 Yes

102 12 15.65 Yes

102 23 10.74

103 12 10.28

98 29 30.816
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Table A2
ERCOT wind plants.

Number Name Latitude Longitude

1 Delaware Mountain 31.6486 �104.75

2 Woodward 30.9575 �102.377

3 Indian Mesa 30.9333 �102.182

4 Southwest Mesa 31.0844 �102.108

5 King Mountain 31.2213 �102.161

6 Kunitz 31.3478 �104.4723

7 Capricorn Ridge 31.8207 �100.793

8 Airtricity 32.0649 �101.536

9 Sweetwater 32.32 �100.4

10 Trent Mesa 32.429 �100.199

11 Buffalo Gap 32.2287 �100.062

12 Horse Hollow 32.344 �99.9853

13 Callahan Divide 32.299 �99.872

14 Post Oak 32.7234 �99.2963

15 Mesquite 32.7234 �99.2963

16 Camp Springs 32.7556 �100.698

17 ENA Snyder 32.7921 �100.918

18 Brazos 32.9574 �101.128

19 Red Canyon 32.9389 �101.316

20 Whirlwind 34.0862 �101.086
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