IEA Solar PV roadmap targets

2010

2020

Key findings

- Solar photovoltaic (PV) power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and reduce 2.3 gigatonnes (Gt) of CO₂ emissions per year.
- PV will achieve competitive parity with the power grid by 2020 in many regions. Achieving this will require a strong and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment.
- As grid competitiveness is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phaseout of economic incentives, grid access guarantees, and sustained R&D support.
- As PV matures into a mainstream technology, grid integration and management and energy storage become key issues. The PV industry, grid operators and utilities will need to develop new technologies and strategies to integrate very large amounts of PV into flexible, efficient and smart grids.

Annual CO₂ equivalent emissions avoided through PV

2010 2020 2030 2040 2050

	2030		20	040
Large-scale integration of PV power in the grid Wh	Utility price: USD 1 200 Costs: 70 USD / MWh		PV systems and powe	er for general purpo
- 2 nd competitiveness level: n costs = retail electricity prices and tariffs		Estimated re	tail electricity prices	5
	3 rd competitiveness level:			
PV ge	neration costs = wholesale electr	icity costs		
olders (<i>demand side</i>) R&D and PV industry stakeholders (<i>suppl</i>	y side)			
enabling framework with net metering and priority access to the grid	Framework for full mar	ket competition with priority access to the g	rid	
nto account solar building regulations and obligations mentation mechanisms for grid investments and storage solutions for full scale in	ntegration of PV			
ous R&D funding on medium-term cell and system technologies				
d system applicability of PV and related technologies and products	ous R&D funding on novel concepts ar	nd applicability		
d applied research on emerging PV technologies and applications Research Enhanced storage technologies	n into concepts for ultra high performa	nce / low cost approaches		
Tangible contribution Transition to self- sustained markets	Capacity: 900 GW Market: 105 GW/yr Share: 5%	High penetration of PV in the	grid Capaci Market	ty: 2 000 GW :: 127 GW/yr hare: 9%
	1200 TWh/yr			

2050

Dise use Utility price: USD 800 Costs: 45 USD / MWh BLUE Map retail electricity costs BLUE Map wholesale electricity costs PV residential PV utility

Next 10 years: achieving grid parity for PV

Achieving this roadmap's targets will require the rapid expansion of the PV industry by 2020. This will imply a six-fold increase of annual industrial production up to 34 GW/yr by 2020, and reducing system and generation costs by more than 50% to achieve grid parity in many markets. Typical generation costs in mediumhigh irradiation regions will range from 10 - 21 USD cents/kWh depending on the type of application and irradiation level.

Reaching these goals will require sustained and consistent policy frameworks and incentives in more countries in order to support markets, trigger investments and foster industrial improvement worldwide.

Moreover, it will be important to sustain R&D efforts. This will allow to improve crystalline silicon and thin film systems, as well as to accelerate the development of emerging technologies and novel devices.

Key actions 2010-2020

- Provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of photovoltaic systems.
- Implement effective and cost-efficient PV incentive schemes and financing mechanisms; incentive schemes will be transitional and decrease over time to foster innovation and technological improvement.
- Increase R&D efforts to reduce costs and ensure PV readiness for rapid deployment, while also supporting longer-term breakthroughs.

Solar PV technology milestones

Solar resource and regional shares of world PV capacity

PV efficiency targets: the role of R&D

Crystalline silicon te	echnologies	2010 - 2015		2015 - 2020		2020 - 2030 / 2050
Efficiency targets (commercial modules)		Single-crystalline: 21%Multi-crystalline: 17%		Single-crystalline: 23%Multi-crystalline: 19%		Single-crystalline: 25%Multi-crystalline: 21%
Industry manufacturin	ng aspects	 Silicon (Si) consumption < 5 grams / watt (g/w) 	on)	• Si consumption < 3 g/W		• Si consumption < 2 g/W
R&D aspects		 New silicon materials a processing Cell contacts, emitters passivation 	and and	 Improved device structures Productivity and cost optimisation in production 		 Wafer equivalent technologies New device structures with novel concepts
Thin film technolog	ies	2010 - 2015		2015 - 2020		2020 - 2030
Efficiency targets (commercial modules)		 Thin film Si: 10% Copper-indium/galliu (CIGS): 14% Cadmium-telluride (C 	ım CdTe): 12%	 Thin film Si: 12% CIGS: 15% CdTe: 14% 		 Thin film Si: 15% CIGS: 18% CdTe: 15%
Industry manufacturing aspects High rate deposition Roll-to-roll manufacture Packaging 		Simplified production processesLow cost packaging		 Large high-efficiency production units 		
R&D aspects		 Large area deposition Improved substrates a transparent conduction 	processes and ve oxides	Improved cell structuresImproved deposition techniques	ues	 Advanced materials and concepts
	_					
	Concentra	ting PV	Emerging	y technologies	Nov	el technologies
Type of cell	High cost	t, super high efficiency	• Low cos	Low cost, moderate performance		ery high efficiency; Full spectrum ilisation
Status and potential• 23% alternating current (AC) system efficiency demonstrated • Potential to reach over 30% in the medium-term• E Ic C C		 Emergir level (e. CIGS) First app market 	 Emerging technologies at demonstration level (e.g. polymer PV, dye PV, printed CIGS) First applications expected in niche market applications 		lide variety of new conversion rinciple and device concepts at b level amily of potential breakthrough chnologies	
 Reach super high efficiency over 45% Achieve low cost, high-performance solutions for optical concentration and tracking 		 Improve to the le applicat Encapsu 	rovement of efficiency and stability the level needed for first commercial ications upsulation of organic-based concepts		oof-of-principle of new conversion oncepts ocessing, characterisation nd modelling of especially anostructured materials and devices	

Yearly sum of global irradiance and shares of global cumulative installed PV capacity per region

Solar map source: Meteotest; database Meteonorm (www.meteonorm.com)

Solar PV economic milestones

Targets for residential sector		2008	2020	2030	2050
Typical turn-key system price (2008 USD/kW) *		6 000	2 700	1 800	1 200
Typical electricity generation costs (2008 USD/MWh)	2 000 kWh/kW	360	160	100	65
	1 500 kWh/kW	480	210	135	90
	1 000 kWh/kW	720	315	205	135

Targets for commercial sector		2008	2020	2030	2050
Typical turn-key system price (2008 USD/kW)		5 000	2 250	1 500	1 000
Typical electricity generation costs (2008 USD/MWh)	2 000 kWh/kW	300	130	85	55
	1 500 kWh/kW	400	175	115	75
	1 000 kWh/kW	600	260	170	110

Targets for utility sector		2008	2020	2030	2050
Typical turn-key system price (2008 USD/kW) **		4 000	1 800	1 200	800
Typical electricity generation costs (2008 USD/MWh)	2 000 kWh/kW	240	105	70	45
	1 500 kWh/kW	320	140	90	60
	1 000 kWh/kW	480	210	135	90

Photovoltaic electricity generation in TWh ***	2010	2020	2030	2040	2050
Residential	23	153	581	1 244	1 794
Commercial	4	32	144	353	585
Utility	8	81	368	910	1 498
Off-grid	3	32	154	401	695
Total	37	298	1 247	2 907	4 572
Share of global electricity generation in %	0.2	1.3	4.6	8.5	10.8

Photovoltaic capacity in GW	2010	2020	2030	2040	2050
Residential	17	118	447	957	1 380
Commercial	3	22	99	243	404
Utility	5	49	223	551	908
Off-grid	2	21	103	267	463
Total	27	210	872	2 019	3 155

Annual photovoltaic market in GW	2010	2020	2030	2040	2050
Residential	4.1	18	50	55	53
Commercial	0.7	4	13	17	20
Utility	1.6	8	28	37	44
Off-grid	0.6	4	14	19	24
Total annual market	7.0	34	105	127	141

lifetime 25a (2008), 30a (2020), 35a (2030), 40a (2050), operations and maintenance 1%

* Assumptions: Interest

rate 10%, technical

** Best system prices lower than 3 000 USD/kW were reported in 2009

*** Average electricity generation per kW is 1 300 kWh/kW in the residential sector, 1 450 kWh/kW in the commercial sector, 1 650 kWh/kW in the utility sector and 1 500 kWh/kW in the off-grid sector